XP131A1715SR

JTR1106-001a

パワーMOS FET

■概要

XP131A1715SR は、低オン抵抗、超高速スイッチング特性を実現した N チャネルパワーMOS FET です。スイッチング速度の高速化ができ、セットの高効率化、省エネルギー化を図ることが可能です。 パッケージはパワーミニモールド SOP-8 を使用しており高密度実装を可能にしています。

■用途

- ●ノートブック PC
- ●携帯電話
- ●オンボード電源
- ●Li イオン電池

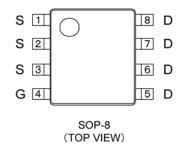
■特長

低オン抵抗 : Rds(on)= 0.012 Ω (Vgs=4.5V)

: Rds(on)= 0.015Ω (Vgs=2.5V)

: Rds(on)= 0.025Ω (Vgs=1.5V)

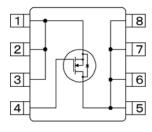
超高速スイッチング


駆動電圧 : 1.5V 駆動

N チャネル パワーMOS FET

DMOS 構造

SOP-8 パッケージ


■端子配列

■端子説明

端子番号	端子名	機能
1~3	S	ソース
4	G	ゲート
5~8	D	ドレイン

■等価回路

N チャネル MOSFET (1 素子内蔵)

■絶対最大定格

Ta = 25°C

項目	記号	定格	単位
ドレイン・ソース間電圧	Vdss	20	V
ゲート・ソース間電圧	Vgss	±8	V
ドレイン電流 (DC)	ld	10	Α
ドレイン電流 (パルス)	ldp	40	Α
逆ドレイン電流	ldr	10	Α
許容チャネル損失 *	Pd	2.5	W
チャネル温度	Tch	150	°C
保存温度	Tstg	-55~150	°C

^{*}ガラスエポキシ基板実装

■電気的特性

DC 特性 Ta = 25℃

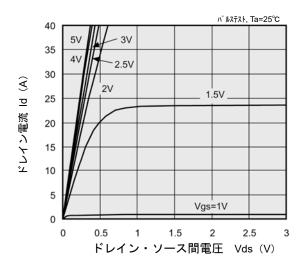
項目	記号	条件	MIN.	TYP.	MAX.	単位
ドレイン遮断電流	ldss	Vds=20V, Vgs=0V	-	-	10	μΑ
ゲート・ソース間漏れ電流	lgss	Vgs=±8V, Vds=0V	-	-	±1	μΑ
ゲート・ソース間カットオフ電圧	Vgs(off)	Id=1mA, Vds=10V	0.5	-	1.2	V
		Id=5A, Vgs=4.5V	-	0.009	0.012	Ω
ドレイン・ソース間オン抵抗 **	Rds(on)	Id=5A, Vgs=2.5V	-	0.011	0.015	Ω
		Id=1.5A, Vgs=1.5V	-	0.017	0.025	Ω
順伝達アドミタンス **	Yfs	Id=5A, Vds=10V	-	34	-	S
ボディドレインダイオード 順方向電圧	Vf	lf=10A, Vgs=0V	-	0.8	1.1	V

^{**} パルステスト

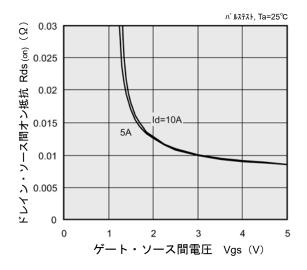
ダイナミック特性 Ta = 25℃

項目	記号	条件	MIN.	TYP.	MAX.	単位
入力容量	Ciss	Vds=10V, Vgs=0V f=1MHz	ı	2000	-	pF
出力容量	Coss		-	1000	-	pF
帰還容量	Crss		-	450	-	pF

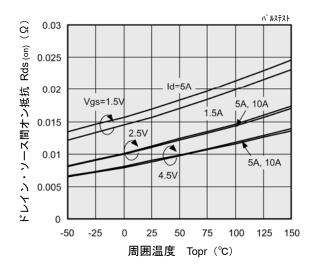
スイッチング特性 Ta = 25℃

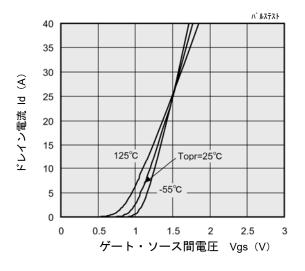

項目	記号	条件	MIN.	TYP.	MAX.	単位
ターンオン遅延時間	td (on)	Vgs=5V, Id=5A Vdd=10V	-	15	-	ns
上昇時間	tr		-	25	-	ns
ターンオフ遅延時間	td (off)		-	95	-	ns
下降時間	tf		-	15	-	ns

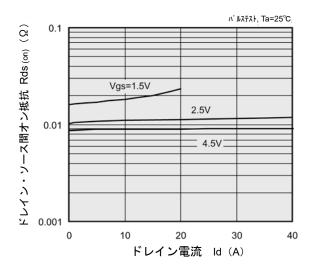
熱特性

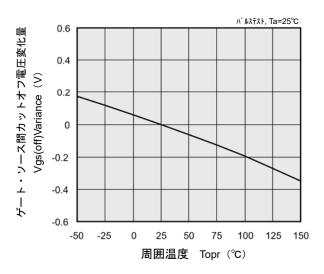

項目	記号	条件	MIN.	TYP.	MAX.	単位
熱抵抗(チャネルー周囲)	Rth (ch-a)	ガラスエポキシ基板実装	-	50	-	°C/W

■特性曲線

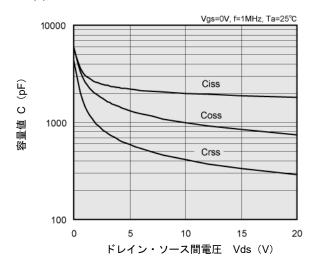

(1)ドレイン電流-ドレイン・ソース間電圧 特性例


(3)ドレイン・ソース間オン抵抗ーゲート・ソース間電圧 特性例

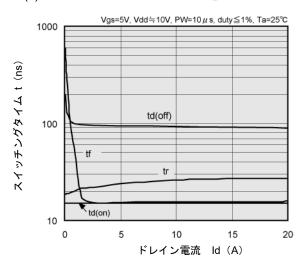

(5)ドレイン・ソース間オン抵抗-周囲温度 特性例


(2)ドレイン電流ーゲート・ソース間電圧 特性例

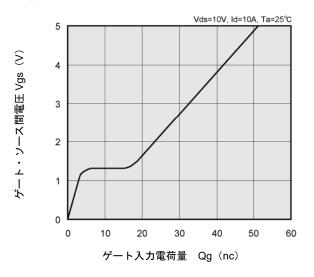
(4)ドレイン・ソース間オン抵抗-ドレイン電流 特性例

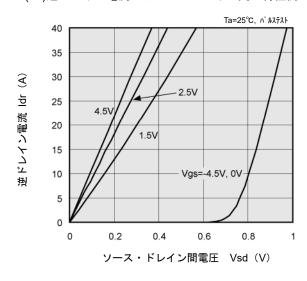


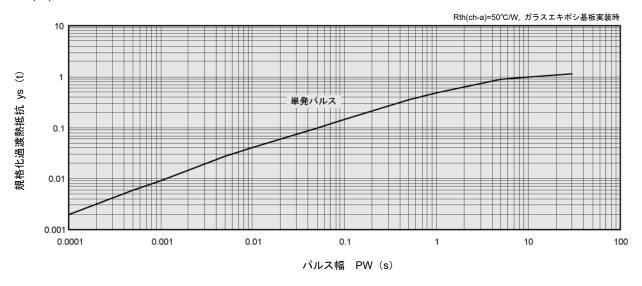
(6)ゲート・ソース間カットオフ電圧変化量-周囲温度 特性例



■特性曲線


(7)容量値ードレイン・ソース間電圧 特性例


(8)スイッチングタイムードレイン電流 特性例


(9)ゲート・ソース間電圧-ゲート入力電荷量 特性例

(10)逆ドレイン電流-ソース・ドレイン間 特性例

(11)規格化過渡熱抵抗ーパルス幅 特性例

- 1. 本書に記載された内容(製品仕様、特性、データ等)は、改善のために予告なしに変更することがあります。製品のご使用にあたっては、その最新情報を当社または当社代理店へお問い合わせ下さい。
- 2. 本書に記載された技術情報は、製品の代表的動作・応用を説明するものであり、工業所有権、その他の権利に対する保証または許諾するものではありません。
- 3. 本書に記載された製品は、通常の信頼度が要求される一般電子機器(情報機器、オーディオ/ビジュアル機器、計測機器、通信機器(端末)、ゲーム機器、パーソナルコンピュータおよびその周辺機器、家電製品等)用に設計・製造しております。
- 4. 本書に記載の製品を、その故障や誤作動が直接人命を脅かしたり、人体に危害を脅かす恐れのある装置やシステム(原子力制御、航空宇宙機器、輸送機器、交通信号機器、燃焼制御、生命維持装置を含む医療機器、各種安全装置など)へ使用する場合には、事前に当社へご連絡下さい。
- 5. 当社では製品の改善、信頼性の向上に努めております。しかしながら、万が一のためにフェールセーフとなる設計およびエージング処理など、装置やシステム上で十分な安全設計をお願いします。
- 6. 保証値を超えた使用、誤った使用、不適切な使用等に起因する損害については、当社では責任を負いかねますので、ご了承下さい。
- 7. 本書に記載された内容を当社に無断で転載、複製することは、固くお断り致します。

トレックスセミコンダクター株式会社